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Abstract 24 

Global climate change and excessive nutrient loading are rapidly altering the species 25 
composition and functioning of aquatic ecosystems. Lake Erie has exemplified this global trend. 26 
Changing land use practices and altered precipitation regimes have led to increased 27 
bioavailable phosphorus (TBP) loading to the western basin of Lake Erie (WBLE), altering 28 
phytoplankton (algae and cyanobacteria) community composition and producing large harmful 29 
algal blooms. At an annual scale, it is clear that spring (March – July) TBP loading from the 30 
Maumee River is the primary determinate of cyanobacteria bloom extent in WBLE; yet, there 31 
has been no comprehensive examination of how nutrient loading and climate have influenced 32 
the seasonal dynamics of cyanobacteria or the rest of the phytoplankton community. This is an 33 
important knowledge gap because these human induced drivers of environmental change are 34 
predicted to have synergistic effects on cyanobacteria bloom timing and extent. Furthermore, 35 
we have a poor understanding of what controls the dynamics of the edible phytoplankton taxa 36 
that likely support the zooplankton and fish production. Here we combine abiotic and biotic data 37 
from the 20-year (1995-2015) Lake Erie Plankton Abundance Survey (LEPAS) with Maumee 38 
River nitrogen (N), phosphorus (P), and silica (Si) loading rates and ratios to determine how and 39 
why phytoplankton communities have changes in the WBLE. We conducted two sets of 40 
analyses. First, we examined seasonal and inter-annual patterns in phytoplankton community 41 
dynamics and their mechanistic drivers at one site near the Maumee River mouth. Then, we 42 
examined the spatial patterns of phytoplankton community dynamics. This second analysis is 43 
ongoing and is not discussed in depth. Supporting previous research, modeling for the first 44 
project shows that cyanobacteria blooms increased after 2003 likely due to warmer water 45 
temperature as well as recent (preceeding 14-days) and spring TBP loading. The biomass of 46 
green algae, diatoms, and cryptophytes also increased between 1995 and 2015. Diatom 47 
biomass increased with high rates of NO3 loading and warm temperatures, whereas green algae 48 
and some cryptophytes were favored by cooler water temperatures and high rates of TBP 49 
loading. We also observed a considerable advance (> 30 days) in the phenology of both 50 
cyanobacteria and diatoms between 1995 and 2015, with an earlier onset and later end to the 51 
period of cyanobacteria dominance. Our results highlight that climate warming in conjunction 52 
with unchecked nutrient loading will further increase both the size and duration of cyanobacteria 53 
blooms and may lead to a decline in cryptophytes which could limit the quantity of edible algae 54 
available to zooplankton and higher trophic levels.  55 
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Technical Report 81 

Project overview 82 

Goals, objectives, and deliverables 83 
The primary goal of our research is to quantify the effects of water temperature and 84 

nutrient loading, two key drivers of anthropogenic change, on phytoplankton community 85 
succession in the Western Basin of Lake Erie (WBLE) and to determine whether those 86 
relationships have changed over the last two decades (i.e., regime shifts). To address this goal, 87 
we are analyzing a 20-year phytoplankton community time series from the WBLE (Fig. 1) and 88 
focusing on three objectives:  89 

(1) identify patterns in phytoplankton successional dynamics linking spring loading with 90 
late-summer cyanobacterial blooms;  91 

(2)  determine how phytoplankton succession is mediated by water temperatures and 92 
nutrient loading from the Maumee River (both in terms of magnitude and 93 
stoichiometry); and  94 

(3)  determine whether there have been regime shifts in the linkages between 95 
phytoplankton dynamics and nutrient loading.  96 

The combined dataset we utilized (i.e., lake physiochemical data, plankton, and nutrient loading 97 
from Maumee River) is characterized by a high degree of complexity and variability in the spatial 98 
and temporal dynamics of phytoplankton communities and their putative drivers (nutrient 99 
loading, temperature, herbivory, etc.). Therefore, we subdivided this project into two 100 
components manuscripts (Fig. 2): 101 

• Maumee Site manuscript: examines seasonal and inter-annual patterns in phytoplankton 102 
community dynamics and their mechanistic drivers (e.g., nutrient loading, water 103 
temperature, and biotic interactions) at one site near the Maumee River mouth (Fig. 1); 104 

• Spatial Patterns manuscript: focuses on spatial patterns of phytoplankton community 105 
dynamics, differences between low and high nutrient loading years, and the mechanistic 106 
drivers of these dynamics at all eight LEPAS sites in the western basin of Lake Erie. 107 

Both manuscripts will address all three objectives. The Maumee Site manuscript has been 108 
drafted and will likely be submitted to a peer-reviewed journal in the early Fall. Analysis for 109 
Spatial Analysis manuscript is currently in ongoing. 110 
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Changes and hurdles 111 
The major complication we confronted was associated with recruiting and retaining a 112 

postdoctoral associate for whom the majority of the budget was allocated. Dr. Andrea Conine, 113 
the first postdoctoral associate, worked on the project for approximately six months (7 May 2018 114 
to 16 November 2018). Before leaving, she generated a first draft of the Maumee Site 115 
manuscript and completed the first round of analyses for the Spatial Patterns manuscript. At that 116 
point, she resigned to take a permanent position at the New York Department of Environmental 117 
Conservation. Two subsequent searches for a replacement postdoctoral associate failed. We 118 
are returning the remainder of those funds. Dr. Danny O’Donnell joined Dr. Hood’s lab group on 119 
4 April 2019 and agreed to take on these two manuscripts in addition to work associated with 120 
the grant which funds his position.  121 
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 122 
  123 

Figure 1. The Western Basin of Lake Erie. Black points are LEPAS sampling locations, labeled 
with their respective site identification numbers. The point circled in red is the Maumee River 
mouth sampling location (36-873), which is the focus of our first manuscript.  
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  125 

Figure 2. Diagram explaining the workflow for projects undertaken as part of this grant. A green 
check mark indicates modeling that is complete or nearly complete. Three red dots indicate 
modeling that is in progress.  
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Background 126 

The combined effects of climate change and nutrient loading have dramatically altered 127 
the structure of the Lake Erie phytoplankton community over the past two decades (Michalak et 128 
al. 2013, Scavia et al. 2014, Stumpf et al. 2016). Extreme weather events are occurring with 129 
increasing frequency and intensity, causing runoff of agricultural nutrients into rivers and thence 130 
into the lake, where excessive loading of nitrogen (N) and phosphorus (P) can trigger harmful 131 
algal blooms (HABs; Michalak et al. 2013, Brooks et al. 2016, Stumpf et al. 2016). While this 132 
phenomenon has been extensively studied, it is unclear how the timing, magnitude and 133 
stoichiometry (elemental ratios of carbon [C], N, P and silica [Si]) of episodic river discharge 134 
interact with other climatic variables (e.g. water temperature) to structure Lake Erie 135 
phytoplankton community dynamics at both intra- and interannual timescales. Predicting 136 
response of phytoplankton communities to environmental change requires a nuanced 137 
understanding both of the direct effects of nutrient enrichment and climate on population 138 
dynamics (Stumpf et al. 2012, Stumpf et al. 2016) and of indirect effects manifested through 139 
biotic interactions (e.g., competition or herbivory; Hampton et al. 2006, Carey et al. 2017). 140 

While interannual patterns in spring P loading is a strong predictor of maximum 141 
cyanobacteria bloom extent, the timing of nutrient pulses, warm air temperatures, and low-wind 142 
periods are also important determinates of phytoplankton dynamics. For instance, Michalak et 143 
al. (2013) hypothesized that the record-setting 2011 bloom of the toxic cyanobacterium 144 
Microcystis sp. in Lake Erie resulted from a particular sequence of events: 1) unusually high 145 
spring precipitation events leading to record-setting bioavailable P loading into Lake Erie; 2) 146 
higher than average summer water temperatures (~3°C higher than the 1991-2011 average); 147 
and 3) unusually weak winds and currents in the Western Basin of Lake Erie (WBLE) in late 148 
winter and spring, leading to poor mixing and longer residence times than in previous years, and 149 
thus less dilution and flushing of nutrients from the system. During the 2011 bloom, Microcystis 150 
sp. depleted the N pool and was replaced by a secondary bloom of N2-fixer Dolichospermum sp. 151 
It is unclear how nutrient loading, weather patterns, and recurring cyanobacterial blooms 152 
interact to influence the seasonal succession of other phytoplankton taxa which may be 153 
particularly important for supporting production at higher trophic levels.  154 

Seasonal patterns of phytoplankton community succession depend upon environmental 155 
conditions, nutrient supply, competition among phytoplankton species, and herbivory. The 156 
Plankton Ecology Group hypothesized that these processes create a predictable seasonal 157 
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succession in phytoplankton communities, mediated by climate, herbivory, as well as by the 158 
loading of nutrients and suspended sediments (Sommer et al. 1986, Sommer et al. 2012). Yet, 159 
these seasonal dynamics are poorly documented for shallow, riverine-dominated systems such 160 
as the WBLE (Briland 2018).  161 

It is not clear whether spring phytoplankton dynamics in WBLE follow the predictions of 162 
Sommer et al. (1986). Sommer et al. (1986) predict that small, fast growing diatoms and green 163 
algae should dominate in the spring when water temperatures are relatively cool, nutrient and Si 164 
concentrations are high, and herbivory is relatively low. Yet spring Maumee River plumes in the 165 
WBLE—which deliver growth-fueling nutrients as well as sediments that rapidly attenuate light—166 
may alter these hypothesized dynamics in hard to predict ways by altering the resource 167 
environment (i.e., nutrient and light availability).  168 

Sommer et al. (1986) predicted that herbivore-resistant taxa that are effective 169 
competitors for nutrients would dominate in the mid- to late summer. Consistent with this 170 
prediction, high N and P loading to WBLE has led to predictable blooms of Microcystis (Chaffin 171 
et al. 2011, Bridgeman et al. 2012, Stumpf et al. 2016, Ho and Michalak 2017) which has high 172 
temperature requirements and is an effective competitor for nutrients (Paerl et al. 2011). In 173 
many years, the Microcystis sp. bloom is followed by an increase in N2-fixer Dolichospermum 174 
sp. (Michalak et al. 2013, Watson et al. 2016). Herbivory is predicted to play an important role in 175 
shaping phytoplankton succession (Sommer et al. 1986, Sommer et al. 2012); however, the 176 
relative importance of herbivory in WBLE with its strong bottom-up and top-down controls is 177 
poorly understood (but see: Boegman et al. 2008, Zhang et al. 2016).  178 

We lack a comprehensive understanding of how environmental and biotic factors 179 
contribute to phytoplankton community dynamics in WBLE which impedes the management of 180 
this system. Over the last twenty years, the WBLE has experience increases in precipitation in 181 
its watershed and nutrient loading (Baker et al. 2014a, Stow et al. 2015), changes in the 182 
abundances of non-native taxa, but not directional changes in water temperature (Mason et al. 183 
2016, Zhong et al. 2018). It is unclear how these changing patterns of precipitation, biotic 184 
invaders, and nutrient loading have interacted with other physiochemical factors (e.g., water 185 
temperature) to alter the relationship between phytoplankton community dynamics and key 186 
physiochemical and biological drivers (i.e., a regime shift; Yuan et al. 2014). Furthermore, while 187 
understanding the controls on bloom forming species is critical, it is important to look beyond 188 
these taxa and understand the dynamics and mechanistic drivers of other phytoplankton groups 189 
(e.g., green algae, diatoms, and cryptophytes). In particular, the influence of climate and nutrient 190 



 9 

loading on edible phytoplankton taxa, which likely fuel food web production, has received little 191 
attention (but has been addressed in lake models:  Zhang et al. 2008, Kane et al. 2009, Roy et 192 
al. 2010).  193 

Managing environmental resources in the face of a highly variable environment with 194 
directional change in key physiochemical drivers requires monitoring as well as a mechanistic 195 
understanding, rooted in ecological theory, of the important drivers of those dynamics. Luckily, 196 
in WBLE abiotic and biotic monitoring data exists which can be used to identify trends and 197 
develop generalizable predictions of community-wide response to nutrient enrichment and 198 
warming at both intra- and interannual time scales. These data can also be used to characterize 199 
the dependence of key species or functional groups on the physiochemical environment as well 200 
as their interactions (Ives et al. 2003, Hampton et al. 2008, Hampton et al. 2013). Given the 201 
extensive monitoring of phytoplankton dynamics in WBLE, we possess the necessary data and 202 
statistical tools to gain a much more comprehensive understanding of the rapid ecological 203 
change underway in the WBLE. 204 

Here, we ask how climate and nutrient loading have interacted to shape WBLE 205 
phytoplankton dynamics on both an intra- and interannual temporal scale. We analyzed the 20-206 
year Lake Erie Plankton Abundance Survey time series (LEPAS, Fig. 1) using a combination of 207 
univariate and multivariate statistical modeling approaches (Fig. 2). We have split this analysis 208 
into two components which separately emphasize temporal or spatial variation. Our first 209 
manuscript focuses on phytoplankton dynamics at one site near the mouth of the Maumee River 210 
which likely typifies phytoplankton responses to terrestrial nutrient and sediment subsidies. The 211 
second manuscript will examine phytoplankton community patterns across all eight LEPAS sites 212 
in the WBLE. This research, which is ongoing due to issues associated with recruiting and 213 
retaining postdoctoral associates, will elucidate how climatic variability and changes in the 214 
timing and magnitude of nutrient loading have led to shifts in the phenology and strength of 215 
biotic responses of both bloom-forming cyanobacteria and other phytoplankton taxa during a 20-216 
year period of rapid environmental change. 217 

 218 

Methods 219 

Datasets 220 
We combined three datasets for these analyses (Fig. 2): phyto- and zooplankton data 221 

from the LEPAS program, nutrient loading data from the Heidelberg University National Center 222 
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for Water Quality Research (NCWQR), and Maumee River discharge data the United States 223 
Geological Survey (USGS; Station 04193500). Permissions associated with those datasets are 224 
described in the original grant application (SG-531-2018).  225 

The Lake Erie Plankton Abundance Survey (LEPAS, Ohio Department of Natural 226 
Resources Division of Wildlife and The Ohio State University) is a 20-year (1995-2015) dataset 227 
that includes information on phytoplankton and zooplankton community biomass, water 228 
temperature, and dissolved oxygen from eight sites in the WBLE (Fig. 1; Kane et al. 2014). 229 
Samples were collected approximately biweekly from May through September, and 230 
phytoplankton are enumerated to genus while zooplankton are enumerated to species for 231 
common taxa and to Phyla or Family for rare taxa (Briland 2018). To analyze the relationship 232 
between phytoplankton abundances and nutrient (N, P and Si) loadings from the Maumee river, 233 
we have augmented this dataset with USGS discharge data for the Maumee River (Station 234 
04193500), and with solute and nutrient data for the Maumee River from NCWQR. Discharge 235 
and solute chemistry data are provided at a daily or sub-daily resolution for the majority of the 236 
period between 1995 and 2015. These data include discharge (Q), total phosphorus (TP), 237 
dissolved reactive phosphorus (DRP), nitrate (NO3), total nitrogen (TN) and dissolved silica (Si). 238 
Analytical methods used to derive these data are described in depth elsewhere (Baker et al. 239 
2014a). Dr Laura Johnson (NCWQR) provided daily estimates of TN, TP, DRP, and dissolved Si 240 
loads from the Maumee River into Lake Erie for the 1995-2015 period, which were calculated 241 
following the NCWQR’s standard protocol (Baker et al. 2014a). Baker et al. (2014a) showed that 242 
the total bioavailable fraction of phosphorus (TBP) includes ~26% of the total particulate 243 
phosphorus (TPP), and TBP is thus preferable to DRP for predicting phytoplankton responses 244 
(see also: Stumpf et al. 2016). TBP is calculated as  245 

!"# = [(!## − ()#) × , × (1 − .)] + ()#   (1), 246 
where , is the fraction of TPP that is bioavailable and . is the fraction of TPP that is lost to 247 
settling (Stumpf et al. 2016). We used TBP instead of DRP in all models and calculations. 248 

In the first manuscript (Fig. 2), we explored relationships between Maumee River 249 
nutrient loads and phytoplankton community dynamics at a single sampling location in the 250 
Western Basin of Lake Erie, near the mouth of the Maumee River (site # 36-873; 41° 44' 251 
27.999" N; 83° 20' 31.999" W). Of all the LEPAS sampling sites, this site experiences the 252 
earliest and most direct exposure to Maumee River discharge, and may be a bellwether for 253 
other, offshore sites. 254 
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An underemphasized question in research that attempts to link riverine nutrient loads 255 
with lake phytoplankton community dynamics is: Over what time scale or scales do nutrient 256 
loads shape phytoplankton community dynamics? For the WBLE, there is clear evidence that 257 
nutrient loads integrated over both short- and long-time periods shape phytoplankton community 258 
dynamics (Stumpf et al. 2016, Ho and Michalak 2017). The directional impacts of loads 259 
integrated over these windows may differ in sign. For instance, sediment in riverine plumes 260 
might negatively impact phytoplankton due to shading over short periods while associated 261 
nutrient loading would contribute to an increase in phytoplankton biomass over longer periods. 262 
In our preliminary analyses, we evaluated a wide variety of loading windows ranging from one to 263 
365 days. Many of these loading windows were strongly correlated (r > 0.7); so, we focused on 264 
one short-term and one long-term metric of loading. We calculated short-term loads integrated 265 
over the 14 days preceding the sampling date (henceforth “14-day”). Following Stumpf et al. 266 
(2016), long-term loads were the sum of nutrient loads from March through July, or up to the 267 
sampling date, whichever came first (hereafter “Spring”). The Maumee River discharge data we 268 
used were collected at a site near Watersville, OH which we estimated was approximately 5 269 
days of water travel time from our focal site near the Maumee River mouth (also see: Baker et 270 
al. 2014b). Thus, nutrient loading rate for the 14-day window for a phytoplankton sample on 1 271 
June 2019 would be the sum of nutrient loads from 13 May 2019 to 27 May 2019 (a 5-day lag). 272 

 273 

Statistical analyses 274 

Phytoplankton community structure and dimension reduction (Maumee Site manuscript) 275 
Our first question for the Maumee Site manuscript was, which taxa are the major players 276 

in WBLE phytoplankton communities and how have those communities changed over time? To 277 
address that question, we used a principal coordinate analysis (PCoA) to reduce the 278 
dimensionality of the phytoplankton dataset and to facilitate interpretation of “big-picture” 279 
changes in phytoplankton community structure resulting from the large Microcystis sp. blooms 280 
that began in the early 2000s. As it has been shown that large summer Microcystis sp. blooms 281 
have been occurring since about 2003 (Scavia et al. 2014), we conducted separate analyses on 282 
pre-bloom years (1995-2002) and bloom years (2003-2015) to determine how community 283 
structure was affected by the onset of extreme bloom events. This decision was also supported 284 
by preliminary analyses. Phytoplankton taxa were included in the PCoA at the highest available 285 
taxonomic resolution, typically genus; however, only taxa that had greater than 1% of the total 286 
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biomass in at least one sample were included in the analysis to avoid overrepresenting the 287 
effects of rare species. Our PCoA, conducted using the “vegan” R package version 2.5-4 288 
(Oksanen et al. 2018), condensed taxonomic variation into two axes based on Bray-Curtis 289 
dissimilarity indices. This facilitated visual interpretation of the phytoplankton abundance data 290 
and simplified later statistical modeling: we identified the taxa with the top 4 scores related to 291 
each PCoA axis (typically |score| ≥ 0.5) as important taxa to be addressed in the GAMM and 292 
MARSS models described below.  293 

 294 

Temporal variation of phytoplankton biomass (Maumee Site manuscript)  295 
Our second question in the Maumee Site manuscript had two components: (1) what is 296 

the characteristic seasonal dynamics of key phytoplankton groups in WBLE and (2) has the 297 
timing of those seasonal dynamics changed over the period of record? We used generalized 298 
additive mixed models (GAMMs) to address these questions and several others for this project. 299 
GAMMs are preferable to linear models when the relationships being modeling are nonlinear, 300 
which is commonly the case for phytoplankton phenology and the relationship between 301 
phytoplankton biomass and key physiochemical drivers (e.g., temperature or resource 302 
availability). 303 

To address these questions, we modeled the biomasses of important phytoplankton taxa 304 
(identified by the PCoA above) and several abiotic predictors as functions of year, week-of-year 305 
(WOY) and WOY × year interactions. The model is as follows: 306 

1~	4(56678) + 4(96:;8) + 4(56678 ∗ 96:;8) +	ɛ8;      307 

ɛ8~>(0, AB);    (1),   308 

CD;(EF, E8) = G|8IF| 309 

where 1 is the biomass of the target phytoplankton group, 4 is a smoother for each covariate 310 
(Wood 2006), and ɛ8 is the error term allowing for temporal autocorrelation of errors. Temporal 311 
autocorrelation is implied in the model by the third part of phenological model above, in which r 312 
is the correlation coefficient and J is any year except year K; thus |J − K| is larger when two 313 
years are farther apart in time. For many phytoplankton biomasses, a Gamma distribution 314 
provided a superior fit to a Gaussian distribution, due to zero inflation. The exceptions to this 315 
were cyanobacteria and Aulacoseira sp. biomass, which had to be fit using log(y+1)-316 
transformed biomass data with a Gaussian distribution due to convergence failure with the 317 
Gamma distribution. We tested for autocorrelation by building models with and without an 318 
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ARMA(1,0) residual structure of WOY nested in year to account for seasonal and annual 319 
autocorrelation and then comparing AIC values for each (Zuur et al. 2017). All models had lower 320 
AIC values with the residual autocorrelation structure, so we continued using it in the models.  321 

We interpreted phenological models in the following way. A significant value for WOY 322 
indicated that the taxa had a seasonal pattern throughout the ice-free season. A significant 323 
value for year indicated that there was annual change in the biomass of the taxa. If both WOY 324 
and year were significant, but the interaction was not, then the seasonal pattern was becoming 325 
more or less intense annually, but not shifting during the season. Finally, a significant 326 
WOY*year interaction indicated a shift in the seasonal pattern changing in duration or 327 
developing new peaks. GAMM analyses were performed using the “mgcv” package in R (Wood 328 
2019). 329 

 330 

Mechanistic controls of phytoplankton community dynamics (Maumee Site manuscript) 331 
Next in the Maumee Site manuscript, we examine the dominate physiochemical and 332 

biological drivers of phytoplankton dynamics. We used GAMM models to identify how the 333 
dynamics of groups of similar phytoplankton taxa (represented by the two PCoA axes described 334 
above) are shaped by wind speed and direction, Maumee River discharge, nutrient loadings, 335 
nutrient ratios, water temperature, and total zooplankton biomass. Preliminary analysis indicated 336 
that wind speed or direction had little explanatory power. We initially included an ARMA(1,0) 337 
autocorrelation structure in these models to account for temporal autocorrelation across years, 338 
but found that inclusion of this correlation structure did not improve models (dAIC = 2 with 2 df). 339 
The form of the model used is as follows: 340 

#LDM	MNOJ	~	4(PQ) + 4(PB) + ⋯+ 4(PS) + 	ɛ    341 
ɛ	~	>(0, AB)     (1), 342 

where PQ…PS represent T predictors, 4 indicates a nonlinear smoother for each covariate and ɛ 343 
is the error term. Final model parameters and (lack of) autocorrelation structure were 344 
determined by a step-backward approach, using AIC for model comparisons (Zuur et al. 2009). 345 
The most likely models were checked for heterogeneity and normality by examining the 346 
normalized residuals of the model fit against each predictor (Zuur et al. 2009). The predictors 347 
included in the final model are shown in Table 3 of the Results. For each predictor, a significant 348 
effect on PCoA Axis 1 can be interpreted primarily as an effect on cyanobacterial biomass, while 349 
a positive effect on Axis 2 can be interpreted as a positive effect on diatom biomass and a 350 



 14 

negative effect on green algae and cryptophyte biomass. To determine the relative importance 351 
of each predictor in the mechanistic driver models (i.e. the amount of variation in each PCoA 352 
Axis that was explained by each predictor), we fit a separate model with only the single 353 
covariate of interest (MNOJ~4(PS) + 	ɛ), and calculated the adjusted R2 value of that model (Cox 354 
et al. 2017). 355 

 356 

Community and food web interactions (Maumee Site manuscript) 357 
Our final question in the Maumee Site manuscript asks how physiochemical and biotic 358 

interactions (both herbivory and competition) shapes the dynamics of key phytoplankton taxa? 359 
To address this question we used multivariate autoregressive state-space models (MARSS) 360 
which leverage time series data to quantify the strengths and directions of interactions among 361 
multiple entities in a system (Ives et al. 2003, Holmes et al. 2012, Hampton et al. 2013). By 362 
simultaneously incorporating density-dependent interactions among biota, linear relationships 363 
between biota and key covariates, measurement errors and autocorrelation of process errors in 364 
time, MARSS models are a powerful means of characterizing an interaction web such as an 365 
ecological community. Using the “MARSS” R package (Holmes et al. 2018), we are currently 366 
refining MARSS models that integrate climate, nutrient and river discharge data with 367 
abundances of several key phytoplankton and zooplankton taxa from the 20-year LEPAS 368 
dataset, with the ultimate objective of obtaining the most comprehensive understanding to date 369 
of how climate, nutrients, competition, and herbivory interact to produce the phytoplankton 370 
dynamics we have observed in the western basin of Lake Erie over the past 20 years. Such 371 
models have been used to great effect on time series data from other systems in the past 372 
(Hampton et al. 2006, Hampton et al. 2008), and are among the best statistical tools available 373 
for understanding how the components of an ecosystem interact and change over time. 374 

 375 

Spatial-temporal modeling of phytoplankton dynamics (Spatial Patterns manuscript) 376 
Our primary question in the Spatial Patterns manuscript is: How do the mechanistic 377 

linkages between key phytoplankton taxa and physiochemical and biotic drivers influence 378 
spatial patterns in phytoplankton community structure? To address this question, we used 379 
spatially- and temporally-explicit generalized additive models (GAMs) to predict biomass 380 
dynamics of broad phytoplankton taxonomic groups (cyanobacteria, diatoms, green algae, and 381 
cryptophytes) across the WBLE using the INLA R package version 3.5.1 (Rue et al. 2009, 382 



 15 

Lindgren et al. 2011). These models are currently in revision. Briefly, we used these models to 383 
characterize the spatial distribution of each taxonomic group in pre-bloom (1995-2002) and 384 
bloom (2003-2015) time periods. These models use Bayesian integrated nested Laplace 385 
approximations (INLA) to extrapolate the biomass of each taxon to nodes on a triangulated 386 
mesh spread across the study area (Zuur et al. 2017, Zuur and Ieno 2018). The models use 387 
random spatial intercepts (U), a random effect of year (:), and a non-linear fixed effect of day of 388 
week, J((VW), to predict the log-transformed biomass of each group.  389 

log("OD[:JJ) = \TK6;C6]K + J((VW) + : + U + E 390 

:~>(0, A^_`aB ) 391 

E~>(0, AB) 392 

U~bc)d(0, Σ) 393 

This model assumes normally distributed errors with mean 0 and variance AB, with 394 
independently distributed random effects for each year with mean 0 and A^_`aB . The random 395 
spatial intercepts (U) are assumed to be spatially correlated with the mean (0) and the 396 
covariance matrix (Σ) (Zuur et al. 2017). We used a Gaussian Markov random field (GMRF) to 397 
extrapolate the U, assuming that they are normally distributed and that only observations from 398 
adjacent sites are correlated. A continuous domain partial stochastic differential equation 399 
(SPDE) is used to calculate the values of the nodes in the GMRF mesh and their covariance 400 

matrix (Zuur et al. 2017, Zuur and Ieno 2018). 401 

 402 

Results 403 

Maumee site manuscript 404 

Phytoplankton community structure 405 

The principle coordinates analyses (PCoA) revealed both an increase in cyanobacteria 406 
blooms between 2003 and 2015, consistent with other datasets, as well as a surprisingly strong 407 
continuity in the structure of the non-cyanobacteria phytoplankton community (Fig. 3). In this 408 
PCoA, variation along Axis 1 was strongly correlated with cyanobacteria relative abundance, 409 
specifically Microcystis sp. (Cyanophyceae). Diatoms were positively correlated with Axis 2 410 
while green algae and the common cryptophyte Chroomonas sp. were negatively correlated 411 
with Axis 2. Between 1995 and 2002 phytoplankton communities were dominated by diatoms, 412 
green algae, and cryptophytes while between 2003 and 2015 phytoplankton communities were 413 
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often dominated by cyanobacteria (rightward shift of points in Fig 3b), but also had frequent 414 
periods during which diatoms, green algae, and cryptophytes dominated the phytoplankton 415 
community (negative PCoA Axis 1 values in Fig 3).  416 

 417 

418 

 419 
  420 
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Figure 3. Principle coordinates analysis of phytoplankton biomass by taxon (n = 56 taxa) 
during (A) 1995-2002 and (B) 2003-2015. Variation in PCoA Axis 1 is strongly correlated with 
cyanobacteria relative abundance, while Axis 2 is positively correlated with diatoms and 
negatively correlated with green algae and the cryptophyte Chroomonas sp. Each point is a 
sampling occasion at the site closest to the Maumee River. For correlations between Axes 1, 2 
and the five taxa shown in red, see Table 1. 
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 421 
Taxon Axis 1 Axis 2 

Aulacoseira sp. 0.23 0.37 
Chroomonas sp. 0.04 -0.29 
Cryptomonas sp. 0.03 0.07 

Microcystis sp. 0.36 -0.03 
Solitary greens <-0.01 -0.12 

  422 

Table 1. Correlations between PCoA Axes 1 & 2 and the five phytoplankton taxa most influential of those 
axes (shown in red in Figure 3). 
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Temporal variation in phytoplankton biomass 423 

Mean annual biomass of cyanobacteria, diatoms, cryptophytes, and green algae all 424 
clearly increased between 1995 and 2003 (Figure 4), however GAMMs were able to more 425 
precisely capture seasonal changes (week effect), interannual changes (year effect) and 426 

changes in seasonal trends over time (week ´ year interaction) in the biomass of each broad 427 
taxonomic group (Figure 5, Table 2). Between 1995 and 2015, cyanobacterial biomass was 428 
characterized by a late summer/fall bloom that has been increasing in intensity and becoming 429 

longer in duration throughout the time series (week ´ year, P < 0.0001; Figure 5A;  2). 430 
Diatoms exhibited a phenological shift: the spring peak that is apparent early in the time 431 

series shifts later and increased in magnitude over time, becoming a mid-late summer bloom, 432 

peaking in August (week ´ year, P = 0.0046; Figure 5B; Table 2). Neither cryptophytes nor 433 
green algae exhibited a detectable seasonal pattern throughout the time series (week: 434 
Pcryptophytes = 0.14; Pgreens  0.80; Figure 5C,D; Table 2). However, both groups saw an increase in 435 
biomass between 1995 and 1999, at which point the biomass remained constant (year: 436 
Pcryptophytes< 0.0001; Pgreens< 0.0001; Figure 5C,D; Table 2). 437 

 438 
 439 

 440 

  441 

Figure 4. Trends in mean annual A) cyanobacteria and B) diatoms, green algae, and 
cryptophytes biomass between 1995 and 2015. Note differences in y-axis scales. 
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 442 

 443 

Figure 5. GAMM smoother interaction surfaces showing the fitted values for A) log(y+1)-
transformed cyanobacteria biomass, B) diatom biomass, C) green algae biomass, and D) 
cryptophyte biomass as functions of year and week-of-year.  
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 445 

R2 = 0.80 R2 = 0.25

R2 = 0.20

R2 = 0.13 R2 = 0.20

R2 = 0.74

R2 = 0.48

R2 = 0.31

R2 = 0.028

Figure 6. GAMM smoother interaction surfaces showing intra- and interannual variation in 
the covariates used in the mechanistic models, each as a function of year and week-of-year. 
Smoothing function for A) instantaneous water temperature; B) Secchi depth; C) Zooplankton 
biomass; D) Aulacoseira sp. biomass; E) Solitary green algae biomass; F) 14-day DSi:TBP 
loading ratio; G) 14-day TBP:TP loading ratio; H) 14-day NO3:TBP loading ratio; and I) 14-
day integrated Maumee River discharge. 
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 446 

Definitions: PWeek: P-value for Week-of-year effect; PYear: P-value for Year effect; PWeek ´ Year: P-value for 447 
interaction effect. 14-day: as in Figure 2. 448 
* Biomasses of starred taxa were log(y+1)-transformed and fit assuming a Gaussian distribution. All  449 
   other phytoplankton taxa and physical covariates were fit assuming a Gamma distribution with a log  450 
   link function. 451 
  452 

Model PWeek PYear PWeek ´ Year AIC R2 

Biomass models 

Cyanobacteria (mg l-1)* <0.001 <0.001 <0.001 645 0.490 

Diatom (mg l-1) 0.018 0.005 0.009 732 0.091 

Greens (mg l-1) 0.800 <0.001 0.950 708 < 0.001 

Cryptophytes (mg l-1) 0.140 <0.001 0.820 532 0.061 

Significant covariate models 

Water Temp (°C) <0.001 0.091 0.210 742 0.800 

Secchi depth (m) <0.001 0.130 0.620 378 0.250 

Zooplankton biomass (mg l-1) <0.001 <0.001 0.250 496 0.200 

Aulacoseira sp. biomass (mg l-1)* 0.092 0.400 0.060 352 0.028 

Solitary Green biomass (mg l-1) 0.500 <0.001 <0.001 583 0.130 

DSi:TBP14-day (molar) 0.002 <0.001 0.160 1737 0.200 

TBP:TP14-day (molar) <0.001 0.550 0.007 -757 0.740 

NO3:TBP14-day (molar) <0.001 0.005 0.003 2083 0.480 

Q14-day (106 m3) <0.001 0.160 0.001 2412 0.310 

Table 2. Results of GAMMs examining intra- and interannual variation in biomass of 
cyanobacteria, diatoms, green algae and cryptophytes as well as in the covariates used in the 
mechanistic models (see Table 3). Covariate models are shown to summarize intra- and 
interannual patterns in the covariate data used in these analyses and should not be used to 
evaluate patterns of change in these parameters due to the way they were subsampled or 
summarized for these models. For instance, models of 14-day TBP:TP loading, which indicate 
no interannual pattern in this loading ratio over time, should not be interpreted as indicating 
that TBP:TP loading ratio to WBLE has not changed between 1995 and 2015. R2 is the 
proportion of variation in the indicated response variable captured by the whole model. For 
definitions and exceptions see bottom of table.  
 E F 

B C 

G H I 
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Temporal variation in Western Basin biota, physio-chemistry, and loading 453 

Most of the significant physio-chemical predictors of PCoA Axes 1 and 2 (Model 1) 454 
varied at both intra- and interannual scales, and several exhibited notable changes in seasonal 455 
trends between 1995 and 2015 (Figure 6; Table 2). Water temperature and Secchi depth varied 456 
seasonally, but did not differ among years (Figure 6A, B; Table 2). Zooplankton biomass varied 457 
seasonally and changed significantly from year to year, but seasonal trends in zooplankton 458 
biomass did not shift. Aulacoseira sp. biomass did not vary seasonally or interannually, but 459 
there was a marginal shift from early- to late-summer blooms. Solitary green algae did not 460 
exhibit a main effect of week-of-year but bloomed regularly in late summer between 2003 and 461 
2010 (Figure 6E; Table 2). 14-day river discharge (Q14-day) and three nutrient loading ratios 462 
(DSi:TBP14-day,  TBP:TP14-day, NO3:TBP14-day) varied significantly at the intra-annual scale, 463 
however there were no main effects of year on TBP:TP14-day and Q14-day. Q14-day, DSi:TBP14-day 464 
decreased significantly between 1995 and 2015. These short-term loading ratios and rates are 465 
not correlated with annual loading rates or ratios. TBP:TP14-day, and NO3:TBP14-day showed 466 
significant changes in seasonal trends between 1995 and 2015, with NO3:TBP14-day exhibiting a 467 
late-summer peak around 2010, but not in earlier or later years (Figure 6; Table 2). 468 
 469 
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 470 

 471 

 472 
 473 

  PCoA Axis 1 model PCoA Axis 2 model 
Variable Mean ± sd edf P adj R2 edf P adj R2 

Water (physical) 
Water temp. (°C) 21.25 ± 4.07 1.00 0.006 0.064 1.99 0.032 0.049 
Secchi depth (m) 1.29 ± 0.76 1.00 <0.001 0.003 -- -- -- 

Community biomass (mg l-1) 
Zooplankton 213.03 ± 199.8 1.00 0.110 0.080 -- -- -- 

Aulacoseira sp. 1.08 ± 3.20 1.00 0.003 0.090 3.53 <0.001 0.560 
Solitary green 0.23 ± 0.32 1.00 0.025 0.004 2.05 0.007 0.170 

Nutrient loading and river discharge 
DSi:TBPspring 65.62 ± 19.90 3.18 <0.001 0.083 1.00 0.019 0.038 

NO3:TBPspring 131.75 ± 60.82 -- -- -- 1.00 <0.001 0.091 
NO3:TBP14-day 116.40 ± 35.49 1.00 <0.001 0.160 -- -- -- 

TBP:TPspring 0.28 ± 0.050 2.72 <0.001 0.140 2.29 0.002 0.110 
Q (106 m3)spring 2784 ± 1208 -- -- -- 1.00 0.130 0.007 
Q (106 m3)14-day 197.9 ± 244.02 1.00 <0.001 0.055 -- -- -- 
DSi:TBPspring ´ 

Qspring 

-- 1.00 0.020 0.210 -- -- -- 

NO3:TBPspring ´ 
Qspring 

-- -- -- -- 1.00 <0.001 0.14 

Table 3. Significant predictors of PCoA Axis 1 and/or Axis 2 used in the mechanistic GAMM models. The 
“--” in place of a number symbol indicates that a given predictor is not a significant predictor of that PCoA 
axis. Each adjusted R2 is from a GAMM fit to PCoA Axis 1 or 2 as a function of that predictor alone and 
thus indicates the contribution of that covariate to the most likely model. Mean ± sd are overall means and 
standard deviations of predictors. For all other definitions, see bottom of table. 

Definitions: sd: standard deviation; edf: estimated degrees of freedom consumed by smoother; P: 
P-value; adj. R2: adjusted R2, i.e. proportion of variation in the response variable explained by a 
single predictor; ; spring: sum of indicated variable for March through July of each year; 14-day: 14-
day sum of discharge or nutrient loading ratio, lagged by 5 days to account for travel time down the 
Maumee River.  
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Mechanistic controls of phytoplankton community structure  474 

PCoA Axis 1: cyanobacteria 475 

The most likely model of PCoA Axis 1, in which positive values indicate cyanobacteria-476 
dominated communities, contained covariates describing nutrient loading and river discharge, 477 
lake temperature and transparency, as well as several biotic predictors (adj R2 = 0.89, Fig. 7, 478 
Table 3). Taken together, covariates associated with riverine discharge (Q) and nutrient loading 479 
ratios explained 64.8% of the variation in PCoA Axis 1. The most important riverine covariates 480 

contributing to this model were: TBP:TP14-day, NO3:TBP14-day, and a DSi:TBPspring ´ Qspring 481 
interaction (Table 3). In general, these coefficients conspired to create a positive relationship 482 
between cyanobacteria biomass and TBP loading. Yet, each of these loading ratios were better 483 
predictors than TBP loading alone.  484 

Both spring and 14-day integrated covariates played an important role in this model. 485 
Spring loading covariates explained more variation in this model than 14-day integrated 486 

covariates (spring = 43.3%; 14-day = 22%). The most important spring variable was the Qspring ´ 487 
DSi:TBPspring interaction. Cyanobacteria biomass generally increased with Qspring (Maumee River 488 
discharge) and was unimodally related to DSi:TBPspring with a maximum at ~55 (Fig. 7I). 489 
Similarly, cyanobacteria biomass exhibited a U-shaped relationship with TBP:TPspring (Fig. 7G). 490 
Cyanobacteria blooms declined with TBP:TPspring up to a ratio of ~0.25 and then began to 491 
increase with increasing TBP:TPspring. Cyanobacteria also declined with NO3:TBPspring, the most 492 
important 14-day integrated variable (Fig. 7F, Table 2), and Q14-day (Fig. 7H). The decline of 493 
cyanobacteria relative abundance with Q14-day likely reflects the influence of shading by riverine 494 
sediments or flushing by Maumee River waters. 495 

Cyanobacteria biomass increased with instantaneous water temperature (~6.4% of 496 
variation in PCoA Axis 1; Fig 7A). There appears to be a threshold in the data above 20°C 497 
which the model did not capture, suggesting that bloom might be associated with temperatures 498 
greater than 20°C. The biomass of zooplankton and the diatom Aulocoseira sp. both made 499 
significant contributions to the model, explaining nearly 10% of the variation each (Fig. 7 C and 500 
D, respectively). Surprisingly, cyanobacteria biomass increased with zooplankton biomass, 501 
although the spread around the fit was considerable. Cyanobacteria biomass also increased 502 
with Aulacoseira sp. biomass, although this pattern was driven by a dozen sampling dates on 503 
which Aulacoseira sp. biomass was relatively high.   504 
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 505 

  506 

Figure 7. Panels A-I show estimated smoothing curves or surfaces for 10 predictors of 
PCoA Axis 1 mechanistic model. PCoA Axis 1 was positively correlated with cyanobacterial 
relative biomass. The predictors are on the x-axis, and the curves show the contribution of 
the smoother to the fitted values. “Spring” and “14-day” indicate the period for which data 
are integrated, as described in Methods. Bands are ±1 SE. Points are the fitted model + 
residuals. In I, the response surface is the smoother for the Qspring ´ DSi:TBPspring interaction.  
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PCoA Axis 2: green algae, diatoms, and cryptophytes 507 

Species loading onto PCoA Axis 2 was considerably more complex than PCoA Axis 1. 508 
Biomass of Aulacoseira sp. and solitary green algae were the strongest predictors of PCoA Axis 509 
2, explaining 73% of the variation in this axis (Fig. 8, Table 3). In general, the diatom 510 
Aulacoseira sp. was most common when PCoA Axis 2 was high while the solitary green group 511 
was high when this Axis was low. Both of these relationships were non-linear. PCoA Axis 2 512 
increased rapidly with Aulacoseira sp. biomass and then plateaued (Fig. 8B). In contrast, PCoA 513 
Axis 2 exhibited a weak U-shaped relationship with solitary green biomass (Fig. 8C). 514 
Zooplankton biomass was not included in the most likely model.  515 

The most important non-biotic predictors of PCoA Axis 2 were spring integrated nutrient 516 
loading ratios and river discharge related variables including: NO3:TBPspring × Qspring, 517 
TBP:TPspring, and NO3:TBPspring. The NO3:TBPspring × Qspring interaction explained the largest 518 
proportion of variability out of this group (14%) and indicated that high NO3:TBPspring ratios 519 
favored diatoms, particularly following wet springs. This interaction could be interpreted to 520 
indicate that high NO3 loading benefited diatoms, particularly Aulacoseira sp. PCoA Axis 2 521 
declined nonlinearly with TBP:TPspring indicating that low TBP:TP loading ratios in the spring 522 
favored diatoms. A phenomenon which was common before 2003 (also see Fig. 6D). In 523 
contrast, high TBP:TPspring loading ratios favored solitary greens; indeed, these taxa were more 524 
common late in the season after 2005 (Fig. 6E). 525 

Finally, PCoA Axis 2 increased with water temperature (R2 = 0.049; Fig. 8A, Table 3), 526 
indicating that cold temperatures favored cryptophytes and green algae while warm 527 
temperatures favored diatoms. Similar to the PCoA Axis 1 model, there appeared to be a 528 
thermal-threshold ~20°C which was not well-characterized by the model. Excluding a few cases, 529 
high values of PCoA Axis 2 were only observed at water temperatures greater than ~20°C. 530 
  531 
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  532 

Figure 8. Panels A-E show estimated smoothing curves for 5 predictors of PCoA Axis 2. Positive 
values indicate higher relative diatom biomass while negative values indicate higher cryptophyte 
and chlorophytes relative biomass. The predictors are on the x-axis, and the curves show the 
contribution of the smoother to the fitted values. Bands and points, and axis label subscripts are 
as above. In F, the response surface is the smoother for the Qspring ´ NO3:TBPspring interaction. 
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 533 

Spatial Patterns manuscript 534 

Spatial-temporal modeling of phytoplankton dynamics 535 

 536 

 537 

These models are currently under development, but some preliminary results are shown 538 
in Figure 9. Briefly, cyanobacterial biomass was lower pre-2003, with the bulk of the biomass in 539 
the Western Basin concentrated to the southeast. When large-scale summer blooms began as 540 
a result of extreme, episodic eutrophication and warming, cyanobacterial biomass increased 541 
dramatically in the vicinity of the Maumee River mouth. 542 

 543 

A

B

Figure 9. Spatial GAM model predictions of Western Basin of Lake Erie cyanobacterial biomass 
(log-transformed) in (A) pre-bloom years (1995-2002) and (B) bloom years (2003-2015). Data 
are averages over each time period. Black dots show the eight sampling locations in the Western 
Basin. Note the differences in the color scales. 
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Discussion 544 

The phytoplankton community in the WBLE has undergone a major compositional shift 545 
over the past two decades. While summer cyanobacterial blooms have become the norm 546 
(Bridgeman et al. 2012; Michalak et al. 2013; Stumpf et al. 2016), other phytoplankton taxa have 547 
also increased dramatically in abundance during the summer months. Maximum summer 548 
biomasses of diatoms, green algae and cryptophytes rose approximately five-fold between 1995 549 
and 2015, primarily between 1995 and 2000. It is intriguing that these groups increased in 550 
biomass prior to what is considered the period of re-eutrophication. Overall, patterns in the 551 
composition of non-cyanobacterial phytoplankton indicate that recent increases in cyanobacteria 552 
blooms appear not to have had a negative effect on other phytoplankton, at the major groups 553 
level, many of which are relatively more edible to planktonic herbivores. 554 

In addition to changes in composition and maximum abundance, our results also reveal 555 
changes in the phenology of cyanobacteria and diatoms. These groups exhibited distinct 556 
unimodal seasonal trends that changed from 1995 to 2015. As observed in other systems in 557 
conjunction with increasing water temperatures (Winder and Schindler 2004, Peeters et al. 558 
2007), WBLE cyanobacteria blooms started earlier and ended later in 2015 relative 1995. The 559 
timing of peak cyanobacteria biomass changed from around 29 June in 1995 to 10 August in 560 
2015 – a 40-day shift. These changes likely reflect a combination of warmer water temperatures 561 
and increased nutrient loading (see discussion below). The phenology of diatoms also changed 562 
from 1995 to 2015, exhibiting an earlier start and later end to the diatom bloom. Similar to the 563 
cyanobacteria, the date of peak diatom biomass changed from 10 July to 10 August – a 30-day 564 
shift. This shift in diatom phenology likely reflects the “blooms” (note: peak diatom biomass was 565 
always considerably lower than peak cyanobacteria biomass) of Aulacoseira sp. observed 566 
during the last decade of the LEPAS time series which our models associate with high NO3:TBP 567 
loading ratios integrated between March and July.  568 

Our model indicated that cyanobacteria biomass was highest at warm temperatures and 569 
following periods of both long- and short-term P loading. Cyanobacteria biomass (i.e., PCoA 570 
Axis 1) increased with water temperature up to the maximum temperature observed (28.3°C) 571 
and there appeared to be a threshold around 20°C above which the highest cyanobacteria 572 
biomasses were observed. Cyanobacteria biomass also increased with Qspring, Q14-day, and 573 
TBP:TPspring (when > 0.2); whereas, it declined with DSi:TBPspring and NO3:TBP14-day. Here, 574 
discharge (Q), which was also integrated over the given time period, should be considered a 575 

A B 
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general indicator of nutrient loading rate due to the high covariance among water, nutrient, 576 
sediment loads. Overall, metrics associated with long-term TBP loading explained two times as 577 
much variation in PCoA Axis 1 than those associated with short-term loading (43% versus 578 
21%). Unfortunately, it is difficult to parse the relative contribution of the other nutrients involved 579 
in these ratios. Utilizing nutrient ratios in these models –with Q as a metric of total loading– was 580 
the only way to circumvent the high covariance among these predictor variables. Since it is 581 
unlikely that dissolved silica plays an important role in fueling cyanobacteria blooms, our 582 
working hypothesis is that TBP is driving these relationships  583 

Our analysis of the drivers of cyanobacteria blooms in WBLE supports previous research 584 
with Microcystis spp. and other cyanobacteria species. Two major environmental drivers, high 585 
temperature and excessive TBP, are likely the most important drivers of summer cyanobacterial 586 
blooms (Klemer and Konopka 1989, Paerl and Huisman 2008, Stumpf et al. 2016). This 587 
hypothesis is founded on both decades of evidence from field studies (Smith 1983), and on the 588 
physiology of cyanobacteria, which commonly have higher thermal optima for population growth 589 
than other phytoplankton taxa (Robarts and Zohary 1987, Nalley et al. 2018), and which 590 
generally have a high demand for P, relative to N (Smith 1983, Klausmeier et al. 2008). 591 
Similarly, studies of Lake Erie’s recent cyanobacterial blooms have implicated both climate 592 
change and increasing riverine inputs of TBP due to intensifying land use practices (Stumpf et 593 
al. 2012, Michalak et al. 2013, Stumpf et al. 2016). 594 

Analysis of PCoA Axis 2 indicated that the relative balance between diatoms (high 595 
values) and greens/cryptophytes (low values) was shaped by water temperature as well as the 596 
spring loading ratios of NO3:TBP, TBP:TP, and DSi:TBP. Low levels of TBP and high levels of 597 
NO3 favored diatoms while the inverse favored green algae and the cryptophyte Chroomonas 598 
sp. Surprisingly, given the high Si requirements of diatoms (Sommer and Stabel 1983, Tilman et 599 
al. 1986, Conley and Kilham 1989, Thamatrakoln and Hildebrand 2008), diatom growth was 600 
favored when spring (March-July) DSi:TBP loading ratios were relatively low (<70). Indeed, 601 
while summer DSi:TBP decreased between 1995 and 2015, summer diatom biomass 602 
increased. It is important to note that high values of PCoA Axis 2 were associated with a high 603 
biomass of the diatom Aulacoseira sp which co-occurred with Microcystis sp. during blooms. 604 
Our results suggest that it is unlikely that Si limits diatom growth at our sampling location during 605 
the summer months and that N-limitation may play a role in mediating diatom growth in WBLE 606 
(Billen and Garnier 2007). Some researchers have argued that N-limitation is unlikely to exist in 607 
freshwater systems (Schindler et al. 2008, Schindler et al. 2016), though there is considerable 608 



 31 

disagreement on this point (Elser et al. 2009a, Elser et al. 2009b, Paerl et al. 2016, O’Donnell et 609 
al. 2017). It is interesting to note that the short-term loading covariates did not play a role in the 610 
most likely model for PCoA Axis 2. 611 

Our work supports previous research suggesting that cyanobacteria blooms are favored 612 
by warm temperatures (Paerl and Huisman 2008) and that climate warming will, therefore, 613 
promote larger cyanobacteria blooms. While there is little evidence that water temperatures in 614 
WBLE have been increasing (Mason et al. 2016, Zhong et al. 2018), a biologically important 615 
change in the timing of the peak summer temperature may have occurred, although this should 616 
be evaluated with a higher-frequency temperature dataset. The observed peak summer water 617 
temperature at our sampling location advanced by ~5 weeks earlier between 1995 and 2015. 618 
Concurrent with this shift, the summer maxima of cyanobacterial and diatom biomasses 619 
advanced by at least as much. We did not observe an interaction between water temperature 620 
and nutrient loading rates or ratios in either the PCoA Axis 1 or 2 models, suggesting that the 621 
effect of nutrients and temperature on phytoplankton biomass accumulation were additive and 622 
not synergistic (i.e., interactive) as suggested by Paerl and Huisman (2008). 623 

In summary, between 1995 and 2015 there has been a distinct shift in phytoplankton 624 
total biomass and community structure in WBLE, which has been well documented. Our 625 
analyses make clear that interactions between water temperature and nutrient loading have 626 
greatly enhanced both cyanobacteria and diatom growth. We also show that green algae and 627 
cryptophytes exhibited higher biomass during this period of re-eutrophication. Our results to 628 
date (which focus primarily on the site nearest to the Maumee River mouth) indicate that 629 
temperature and TBP play an important role in shaping cyanobacteria biomass. In contrast, 630 
diatoms biomass increased with high rates of NO3 loading and warm temperatures; whereas, 631 
green algae and the cryptophyte Chroomonas sp. were favored by cold water temperatures and 632 
high rates of TBP loading. Interestingly, cyanobacteria appeared to respond to variation in both 633 
short- and long-term loading; whereas, diatoms, greens, and Chroomonas sp. responded only 634 
to long-term loading. We also observed a considerable advance (> 30 days) in the phenology of 635 
both cyanobacteria and diatoms between 1995 and 2015, with an earlier onset and later end to 636 
the period of cyanobacteria dominance. Echoing Paerl and Huisman (2008), our results 637 
highlight that climate warming in conjunction with unchecked nutrient loading will only further 638 
increase both the size and duration of cyanobacteria blooms. While nutrient loading and 639 
cyanobacteria dominance did not have the impact on diatoms, greens, and cryptophytes that we 640 
expected our results indicated that warming might lead to a decline in both greens and 641 
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cryptophytes which could limit the quantity of edible algae available to zooplankton and higher 642 
trophic levels. 643 
 644 
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